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Abstract
We extend recent studies of 3D short-ranged wetting transitions by deriving an interfacial
Hamiltonian in the presence of an arbitrary external field. The binding potential functional,
describing the interaction of the interface and the substrate, can still be written in a
diagrammatic form, but now includes new classes of diagrams due to the coupling to the
external potential, which are determined exactly. Applications to systems with long-ranged
(algebraically decaying) and short-ranged (exponentially decaying) external potentials are
considered at length. We show how the familiar ‘sharp-kink’ approximation to the binding
potential emerges, and determine the corrections to this arising from interactions between
bulk-like fluctuations and the external field. A connection is made with earlier local effective
interfacial Hamiltonian approaches. It is shown that, for the case of an exponentially decaying
potential, non-local effects have a particularly strong influence on the approach to the critical
regime at second-order wetting transitions, even when they appear to be sub-dominant. This is
confirmed by Monte Carlo simulation studies of a discretized version of a non-local interfacial
model.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A particularly subtle problem in interfacial phenomena is
the description of the critical wetting transition with short-
range forces in three dimensions [1–3]. Predictions of
non-universal critical singularities based on renormalization
group studies of local interfacial Hamiltonian models [4, 5]
contrast sharply with the results of extensive Monte Carlo
simulations of wetting in the 3D Ising model, which instead
reveal only mild deviations from mean-field behaviour [6–8].
Recently, however, some progress has been made towards
solving this discrepancy. In a series of recent papers [9–14],
we have shown how a non-local interfacial Hamiltonian for
3D short-ranged wetting may be derived explicitly from an
underlying Landau–Ginzburg–Wilson (LGW) model using
Green’s function techniques. Within this description, the

binding potential, describing the interaction of the interface
(upper wavy line) and a non-planar wall (lower wavy line), can
be written as the diagrammatic expansion

W = a + b + · · · , (1)

which represents different classes of tube-like fluctuation that
zig-zag between the interface and the wall. This approach
highlights the importance of non-local effects at wetting
transitions and, in particular, the role played by two-body-like
interfacial interactions. These are characterized by a diverging
length scale, missing in simpler local approaches, which has
important damping influences on fluctuation effects.

In this paper, we generalize the derivation and analysis
of the interfacial model to allow for the presence of an
arbitrary external field V (r). Our analysis is restricted to
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short-ranged fluid–fluid (or Ising-like spin–spin) systems, but
now considers different types of wall–fluid interaction. As we
shall show, it is still possible to determine exactly the new
form of the binding potential functional W and write this as
a generalized diagrammatic expansion. Two applications of
this formalism are considered in detail. Firstly, we consider
the case of a long-ranged algebraically decaying external
potential. Here, we are able to show how the familiar and
oft-used ‘sharp-kink’ approximation emerges directly from the
exact analysis and determine the corrections to it for arbitrary
interfacial and wall configurations. For the particular case of a
planar interfacial configuration near a planar wall, our result
is in perfect agreement with earlier studies by Dietrich and
Napiórkowski [15]. Next, we consider the very interesting case
of an exponentially decaying wall potential, similar to earlier
(local interfacial) studies by Aukrust and Hauge [16]. As with
systems with short-ranged (contact) wall–fluid forces, this type
of potential is also believed to exhibit (and actually enhance)
non-universal critical effects at 3D wetting transitions. For
example, even the underlying mean-field-like criticality shows
strong non-universal behaviour. Our motivation here is to
understand whether it is possible to ‘turn off’ non-local two-
body interfacial interactions for specific ranges of the external
field. If so, this would have potentially important implications
for the observation of fluctuation-induced non-universality
arising from interfacial fluctuations. However, even when two-
body-like interfacial interactions are sub-dominant, we show
that non-local effects are still highly important in the approach
to the critical regime, and dampen strongly fluctuation effects.

2. Derivation of a non-local model with an external
field

The starting point of the derivation of the non-local (NL)
interfacial model is a continuum Landau–Ginzburg–Wilson
Hamiltonian based on a magnetization-like order parameter
m(r):

HLGW[m] =
∫

dr
{

1
2 (∇m)2 +�φ(m)− εV (r)m

}
. (2)

The potential φ(m) models the bulk coexistence of fluid-
like phases α and β with order parameters −m0 and +m0,
respectively (which, for simplicity, we assume exhibit Ising
symmetry). The shifted potential �φ(m) = φ(m) −
φ(m0) conveniently subtracts the bulk contribution to the free
energy (proportional to the volume). Following our earlier
analysis [10] it is simplest to consider a double-parabola (DP)
approximation for �φ(m), which in zero-bulk field (h = 0) is

�φ(m) = κ2

2
(|m| − m0)

2 (3)

where κ is the inverse bulk correlation length. It is known
that the DP approximation suffices to capture the critical
singularities at wetting transitions. However, one may also
use it as the starting point for a perturbative treatment of
higher-order terms in �φ(m) if so desired [11]. The main
advantage of the DP approximation is that all the terms in

Figure 1. Schematic illustration of a wetting layer of phase β
adsorbed on a substrate. The interfacial configuration is described by
a function �(x) and the substrate by ψ(x). The length ξ‖
characterizes the height–height correlations of the interface.

the binding potential functional can be calculated and ordered
systematically.

The LGW Hamiltonian now includes a coupling with an
external field V (r) with strength ε, which generalizes our
previous analysis and will allow us to consider wetting with
long-ranged wall–fluid interactions. In addition, we suppose
the system is bounded by a wall described by a height function
ψ = ψ(x) which is often conveniently measured above some
plane with parallel displacement x = (x, y) (see figure 1). In
most circumstances of course, the external potential depends
on the wall shape itself so that more correctly we should write
V = V (r; [ψ]) to stress its functional dependence on the wall
shape. This will be assumed implicitly. We also suppose that
the magnetization on the boundary is fixed:

m(r) = m1, for r = (x, ψ(x)). (4)

Without loss of generality, we assume that m1 > 0 so the
wetting layer forms at the wall–α interface for which the
bulk magnetization is −m0. This choice of fixed boundary
condition is easiest to implement using the method discussed
here and allows the non-local nature of the interfacial model to
be derived most cleanly. In the absence of an external potential
term, the condition m1 = m0 represents the mean-field critical
wetting phase boundary for planar wall–α interfaces. Other
choices of boundary condition can also be considered using
Green’s function method [11].

Following Fisher and Jin [17, 18], we adopt a crossing
criterion definition of the interface location which identifies it
as the surface of zero iso-magnetization. Thus we consider
constrained magnetization profiles for which

m(r) = 0 for r = (x, �(x)), (5)

where �(x) is the interfacial height (see figure 1). The
interfacial Hamiltonian is formally defined via a partial trace
over Boltzmann weighted configurations which respect the

2
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crossing criterion. A saddle point evaluation of the constrained
sum leads to the Fisher–Jin identification:

H [�,ψ] = HLGW[m�(r)] − Fwβ [ψ] (6)

where we have subtracted off a surface term corresponding
to the excess free energy of the wall–β interface Fwβ[ψ],
which is explicitly determined in our calculation. In the above
identification, m� is the constrained profile that minimizes the
LGW model subject to the crossing criterion and boundary
condition. Within the DP approximation, this satisfies the
Helmholtz equations

∇2m� = κ2(m� − m0)− εV (r), m� > 0

∇2m� = κ2(m� + m0)− εV (r), m� < 0
(7)

with appropriate boundary conditions in the bulk and at the
interface and wall.

These linear equations can be solved using Green’s
function method similar to that described in [10, 11], but now
with an additional particular solution term arising from the
presence of the external field V (r). These new contributions
can also be expressed diagrammatically. For example, above
the αβ interface:

m(r)+ m0 = m0 + ε

2κ2

(
−

)
, (8)

which satisfies the boundary conditions to exponential
accuracy in the radii of curvature [10]. The first diagram is
the contribution for zero external field and has the algebraic
expression:

=
∫

ds�K (r�, r) (9)

where r� denotes a point at the interface and
∫

ds� a
surface integration with the appropriate area element ds� =
dx

√
1 + (∇�(x))2. In the diagram, the upper and lower wavy

lines represent the interface and substrate, respectively. The
thick straight line represents Green’s function:

K (r1, r2) = κ

2π |r1 − r2|e−κ |r1−r2 | (10)

between points r� (black circle) and r (white circle). A filled
black circle located on a surface represents an integral over that
surface with the appropriate area element.

The final two diagrams have a similar algebraic
interpretation, which now involves the external potential,
which we write diagrammatically

V (r) ≡ (11)

where the wavy line represents the substrate. This notation is
used to emphasize that in many applications the external field
position r arises from an integral of two-body forces between
the point r and every point in the solid substrate. Thus, for
example, the last diagram in (8) represents the expression

=
∫

ds�K (r, r�)
∫

V +
dr′ κK (r′, r�)V (r′), (12)

where V + is the volume above the αβ interface. Here we use
the same notation introduced in [11] that a black dot above
(below) a surface denotes an integral over the volume above
(below) it. A factor of κ is introduced in these volume integrals
so that all the diagrams have the same dimensionality. All other
diagrams have equivalent interpretations.

Similarly, in the region below the αβ interface, one can
express the profile in a diagrammatic manner:

m(r) = m(0)(r)+ ε

2κ2

[
− − +

+ − − + · · ·
]

(13)

where m(0)(r) is the solution for ε = 0, given by [10]

m(r)− m0 = δm1 + m0 + δm1 + · · ·
− (

m0 + δm1 + m0 + · · ·). (14)

Here, δm1 = m1 − m0, and the dots represent higher-order
terms that ‘zig-zag’ between the interface and the substrate.
The meaning of the diagrams is the same as that described
above, with each diagram representing a multi-dimensional
surface integral involving Green’s function K . For example

=
∫

ds�

∫
dsψK (r�, rψ)K (rψ, r). (15)

Again in the final set of diagrams of (13), the black dot located
between the wavy lines signifies an integration over the volume
of the adsorbed layer V − (with a multiplicative factor of κ , for
dimensional consistency). For example

=
∫

ds� K (r, r�)
∫

V −
dr′ κK (r′, r�)V (r′). (16)

Having found the constrained profiles, one can substitute
these into (6) to determine the interfacial Hamiltonian.
However, a more direct route is to use the Feynman–Hellman-
like theorem [11]:

∂H [�,ψ]
∂ε

= − 1

κ

∫
dr κmV (r), (17)

which can be integrated to get the same result. The interfacial
Hamiltonian is

H [�,ψ] = �Aαβ + W [�,ψ] (18)

where � is the surface tension of the (isotropic) αβ interface
and Aαβ = ∫

ds� is its area. The binding potential functional
is given by

W [�,ψ] = W (0)[�,ψ] + 2m0ε

κ
+ ε

κ
W (1) + ε2

4κ3
W (2).

(19)
This expression is exact for planar interfacial (and wall)
configurations and is accurate to exponential order in the radii
of curvature for spherical configurations. We have ordered the
contributions into four sets of diagrams whose interpretation
is as follows: the first contribution is the NL binding potential
functional for V (r) = 0, determined in [10]:

W (0)[�,ψ] = 2κm0δm1 + κm2
0 + · · · , (20)
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where

=
∫ ∫

dsψ ds� K (rψ, r�) (21)

and

=
∫ ∫ ∫

ds� dsψ ds′
� K (r�, rψ) K (rψ, r′

�) (22)

represent the leading-order contributions. All other diagrams
in W (0) involve higher-order multiple surface integrals over K
represented simply by adding additional thick lines that zig-zag
between the surfaces. These contributions resum to yield a hard
repulsion of the interface from the wall but can be otherwise
ignored [10]. The second contribution, coming from a single
diagram, may be regarded as that arising most directly from the
external field:

2m0ε

κ
= 2m0ε

∫
V +

dr V (r). (23)

This is the term that would follow from taking the usual
sharp-kink approximation to the interfacial profile [1] if we
assumed the αβ interface abruptly separates regions of bulk
α-and β-like phases. Finally W (1) and W (2) represents first-
order and second-order corrections to the direct sharp-kink
approximation arising from the interaction of the external field
and the exponentially decaying, or ‘soft’, tails of the profile:

W (1) = −m0 + δm1

−
(
δm1 + m0 + δm1 + · · ·

)

+ m0 + δm1 + m0 + · · · , (24)

W (2) = 2 + − + + − 2

+ + − 2 + · · · (25)

where the single surface diagrams (representing an interface
infinitely far from the wall) are added so that W (1) and W (2)

go to zero as � → ∞. The new expression for the binding
potential functional in the presence of an external field is
certainly more complex than in the original NL model (1).
However, the diagrammatic structure is quite clear and, for
our specific applications, we have found that most of the new
diagrams can be evaluated explicitly. In particular, a closed
expression (not an expansion) can be calculated for the binding
potential at mean-field level, both for planar and curved
substrates (spheres and cylinders) allowing the identification
of curvature corrections [19].

3. Three applications

3.1. Constant external field

In the simplest application, the external potential represents,
not a substrate–fluid interaction, but rather a constant
(negative) bulk ordering field, i.e. εV (r) ≡ h. Then, we find
the expected expression

W [�,ψ] = W (0)[�,ψ] − 2m0hV − + · · · (26)

where V − is the volume of the wetting layer and a constant
term has been subtracted. The correction to W (0), which arises
from the analogue of the sharp-kink term, simply represents
the thermodynamic penalty of having a wetting film of the
metastable phase β . All the contributions from W (1) and W (2)

are completely irrelevant, as they are exponentially small in the
wetting layer thickness. The consequences of non-locality for
complete wetting were explored before [12, 13].

3.2. Long-ranged forces

Now, suppose that the substrate is planar and gives rise
to a long-ranged algebraically decaying potential V (r) =
z−3, with z the normal distance to the wall. For long-
ranged forces the upper critical dimension is always less
than three so non-locality is not expected to bring any new
qualitative effects. We can, however, check this explicitly.
In this case, the dominant diagrams are the sharp-kink term

, and the first-order terms and , appearing in

W (1), which are the ‘soft-kink’ corrections. These generate
the leading-order algebraically decaying contributions to the
binding potential (functional). The diagrams in W (2) also give
rise to algebraically decaying terms, but these are higher order.
The diagrams in W (0) are all exponentially decaying. In this
way, we find the functional

W [�] = m0ε

∫
dx �(x)−2 + 4m0ε

κ2

∫
ds �(x)−4 + · · · , (27)

where ds = √
1 + (∇�)2 dx. Note that this expression involves

both dx and ds integrals, which are testimony to the NL
structure of the functional and are taken as equivalent in local
approaches. Note that, if one removes the assumption of Ising
symmetry for the bulk phases, then the same diagrams in W (1)

also generate a correction of order �−3.
One may check this result against earlier predictions for

a planar interfacial configuration of constant thickness �0 [15],
in which, of course, dx = ds. In this specific case, the binding
potential functional can be written as

W [�] = AαβW (�0) (28)

which defines the usual local binding potential function W (�0).
Dietrich and Napiórkowski [15] determined the form of
this function for both long-ranged wall–fluid and fluid–
fluid interactions. However, when the fluid–fluid interaction
is short-ranged, and one assumes Ising symmetry, one
can easily check that their equation (2.30), together with
coefficients (2.31)–(2.37) are equivalent to W (�0) = m0ε�

−2
0 +

4m0ε

κ2 �
−4
0 +· · · which is, of course, in agreement with the present

theory.

3.3. The NL Aukrust–Hauge model

For our final example, we follow Aukrust and Hauge and
choose a planar wall with an exponentially decaying potential
of the form [16]

V (r) = e−λz, (29)

4
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where z is, again, the normal distance to the wall. This
potential is particularly interesting for wetting. Studies based
on local interfacial Hamiltonians predict that the transition is
first order for λ < κ , while, for λ > κ , it is second order
(critical) with remarkable non-universal properties. Here, we
seek to understand if non-locality influences these predictions,
concentrating on the case of most theoretical interest, λ > κ .
For the exponential potential, many of the diagrams can be
evaluated exactly and we find

W [�] = a + b + c + d + · · · , (30)

with coefficients given by

a = 2κm0δm1 + 2εκm0

λ2 − κ2
(31)

b = κm2
0 (32)

c = 2εm0 (33)

d = − 2ελm0

λ2 − κ2
. (34)

The four contributions to this functional can be understood as
follows: the second diagram is the same as the second diagram
in W (0), and represents a repulsion from the wall, independent
of the external field. The third diagram is simply the sharp-
kink term, i.e. the direct influence of the external field. The
remaining diagrams have contributions from different terms.
For example, the first diagram arises from the first term of

W (0), , and two diagrams of W (1), and . The

final term in (30) arises from the first diagram in W (1), .

3.3.1. Local approach. If the interface is flat, corresponding
to a uniform wetting film of thickness �, the binding potential
function (28) is

W (�) = ae−κ� + be−2κ� +
(

c

λ
+ d

)
e−λ� + · · · . (35)

The minimum of this binding potential determines the mean-
field wetting film thickness �̂. This function is also an essential
ingredient in the standard local interfacial Hamiltonian, which
we refer to as the capillary wave (CW) model:

HCW[�] =
∫

dx

{
�

2
(∇�)2 + W (�)

}
, (36)

valid for wavelengths 0 � q < �, where � ≈ κ is the
high momentum cutoff. If one considers small, Gaussian,
fluctuations about the height �̂, we may determine the mean-
field expression for the height–height correlation function. The
Fourier transform of this is defined as

G(q) ≡
∫

dx12〈δ�(x1)δ�(x2)〉eiq·x12 (37)

where δ�(x) = �(x) − �̂. For the CW model, the mean-field
expression for G(q) follows directly from equipartition:

GCW(q) = kBT

W ′′(�̂)+�q2
(38)

identifying a parallel correlation length ξ‖ =
√
�/W ′′(�̂).

Within the CW theory, this is also the true correlation length
determining the large distance decay of the height–height
correlation function. The simple Lorentzian form of the
structure factor (38), characteristic of classic Ornstein–Zernike
theory, indicates that within the CW description there is only
one diverging length parallel to the wall.

Using the binding potential (35), we therefore conclude
the following for the MF critical wetting behaviour. If λ >
2κ , the repulsive term of order e−λ� is unimportant and the
critical wetting transition (which occurs as a → 0−) exhibits
the same critical singularities as systems with short-ranged
forces. For example, ξ‖ ∼ a−1, which identifies the well-
known MF value of the critical exponent νMF

‖ = 1. If, instead,
κ < λ < 2κ , the term of order e−2κ� is unimportant and the
repulsion from the wall is determined by the external field. The
critical wetting transition still occurs as a → 0−, but is now
characterized by non-universal critical exponents, in particular,
νMF

‖ = λ/(2(λ − κ)). Finally, if λ < κ , the external field term
in dominant and any wetting transition is first order.

The influence of fluctuations on this MF behaviour was
considered by Hauge and Olaussen [20] using renormalization
group analysis of the CW model. The upper critical dimension
for the transition remains d = 3, just as for systems with
strictly short-ranged forces and, at this marginal dimension,
interfacial fluctuations lead to non-universality controlled by
the wetting parameter (ω = κ2kBT/4π�αβ ). They find

ν‖(ω) =

⎧⎪⎨
⎪⎩

νMF
‖

1 − (λ/2κ)ω
for 0 < ω < 2(κ/λ)2

(
√

2 − √
ω)−2 for 2(κ/λ)2 < ω < 2

(39)

and a strong fluctuation regime for ω > 2, for which ξ‖
diverges exponentially. Only for the first regime 0 < ω <

2(κ/λ)2 are the results different from the non-universality
predicted for short-ranged forces by Brézin et al [4], whose
results are recovered by setting λ = 2κ .

3.3.2. Non-local approach. In the absence of an external
field, non-locality does not change the asymptotic critical
behaviour of systems with short-ranged forces, but it modifies
strongly the approach to the critical regime and, hence,
the observability of non-universality. It also explains why
the transition is not driven first order by fluctuation effects,
as predicted by some local theories. Non-locality arises
from the diagram in the binding potential functional,
which introduces another diverging parallel length scale
characterizing a two-body interfacial interaction. Using a
convolution to integrate over the point on the substrate one can
write

=
∫ ∫

ds1 ds2U(|x2 − x1|; �̄) (40)

with 2�̄ = �(x1)+ �(x2) and

U(x; �) = κ2

2π

∫ ∞

2κ�
dτ

e−√
τ 2+κ2x2

√
τ 2 + κ2x2

(41)

5
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is a two-body interfacial interaction. For thick wetting films,
this diagram reduces to

≈
∫ ∫

ds1 ds2 e−κ�(x1)S(|x2 − x1|)e−κ�(x2) (42)

where S(|x2 −x1|) is another two-body interfacial interaction:

S(x) = 1

4πξ 2
NL

e−x2/4ξ 2
NL, (43)

which has the form of a simple Gaussian. The characteristic
length of the Gaussian is identified as

ξNL =
√
�̄

κ
. (44)

As shown in [9, 13, 14], this length scale serves to
cut off the spectrum of interfacial fluctuations that interact
with the wall (in the repulsive term), leading to a very slow
onset of non-universality. This is consistent with Ising model
simulation studies of critical wetting, which only revealed
small deviations from MF-like expectations [6–8].

Upon inclusion of the external field (29), one might
expect similar behaviour for the case of λ > 2κ , since
the diagram (of order exp(−2κ�)) [10] controls the
interfacial repulsion from the wall and the external field term
is higher order. However, it is not clear to what extent non-
locality influences the non-universality in the regime κ < λ <

2κ . This is our concern here.
Non-locality arises in two ways: through the binding

potential functional W [�] and through the functional relation
between the order parameter m and the collective coordinate
�. Let us consider each term in the binding potential
functional (30). As noted above, the diagram is strongly
non-local and is characterized by the same two-body interfacial
interaction S(x) and parallel length scale ξNL. The other three
diagrams evaluate as follows:

=
∫

ds e−κ� (45)

= 1

λ

∫
dx e−λ� (46)

=
∫

ds e−λ�, (47)

which are all local in character. From this, we conclude that
the binding potential functional can be approximated as

W [�] =
∫

dx

{
ae−κ�(x) +

(
c

λ
+ d

)
e−λ�(x)

}

+
∫ ∫

dx1dx2 e−κ�(x1)S(|x2 − x1|)e−κ�(x2) (48)

where irrelevant terms of order O(e−κ�(∇�)2) and
O(e−λ�(∇�)2), arising from the gradient expansion of ds, have
been dismissed.

Therefore, in the regime κ < λ < 2κ , one might be
tempted to conclude that NL effects are unimportant (since the
leading-order terms of the binding potential are, indeed, local)

and non-universal critical effects are more easily observed
than in the regime λ > 2κ . However, this argument is
wrong for two reasons. Firstly, it neglects fluctuation effects.
For example, for ω > 2(κ/λ)2, the renormalized two-body
interfacial interaction is of the same order as the renormalized
local repulsion. Secondly, and more importantly, the approach
to the asymptotic critical regime is strongly influenced by non-
locality, even for ω < 2(κ/λ)2. One can see this readily in
the MF correlation function structure and, by extension, in the
Ginzburg criterion.

Following the analysis given in [12], it is straightforward
to calculate the MF pair correlation function G(r1, r2) =
〈m(r1)m(r2)〉 − 〈m(r1)〉〈m(r2)〉 for the microscopic Hamilto-
nian (2). The result for the singular contribution of the parallel
Fourier transform G(z1, z2; q), when both particles are near the
wall, is given by

G(0, 0; q) ≈ e−2κ�̂e−q2 �̂/κ

E + �q2
, (49)

where

E = aκ2e−κ�̂ + (cλ+ dλ2)e−λ�̂ + 4bκ2e−2κ�̂S(q) (50)

and S(q) = e−ξ 2
NLq2

, is the Fourier transform of the two-body
interaction.

Thus, even in the regime κ < λ < 2κ , where the final
term in E related to the two-body term is unimportant, the
numerator in G(0, 0; q) is still strongly damped for q > 1/ξNL.
This is because the functional relation between fluctuations
in m and � is still non-local [12]. This damping is not
captured by local approaches, but is modelled correctly by
the NL Hamiltonian. This has an immediate implication for
the calculation of the Ginzburg criterion concerning the self-
consistency of MF theory. Following the argument given
in [12], we conclude that MF theory is valid (in 3D) provided
the condition

κ2

2π

∫ �

0
dq

qe−q2ξ 2
NL

E +�q2
 1 (51)

is fulfilled. The interpretation of this is almost exactly the same
as for systems with short-ranged forces. The damping in the
numerator effectively lowers the momentum cutoff from � to
1/ξNL. One way of understanding this is through the concept
of an effective wetting parameter ωeff, whose value depends
on the thickness of the wetting layer. Performing the integral
above, one may re-express the Ginzburg criterion for the NL
model as

ln(1 +�2ξ 2
‖ )  1

ωeff
(52)

where the effective value of the wetting parameter is

ωeff = ω
ln(1 +�2

NLξ
2
‖ )

ln(1 +�2ξ 2
‖ )
. (53)

Even for relatively thick wetting layers, several bulk
correlation lengths thick, ωeff is much smaller than its
asymptotic value ω. This can be seen explicitly [13]. For

6
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example, in regime II the RG result κ� ≈ √
2ω ln(�2ξ 2

‖ ) and
�NL ≈ √

κ/� leads to

ωeff ≈ ω
ln(1 + (κ/��2)eκ�/

√
2ω)

ln(1 + eκ�/
√

2ω)
. (54)

3.3.3. Simulations. To test the above reasoning, we have
performed Monte Carlo simulations of discretized versions of
two interfacial models. The first is a standard local CW model:

HCW =
∫

dx

{
�

2
(∇�)2+h̄�+

(
c

λ
+d

)
e−λ�+be−2κ�

}
, (55)

where h̄ = 2m0|h|. The second is the analogous NL
Hamiltonian:

HNL =
∫

dx

{
�

2
(∇�)2+h̄�+

(
c

λ
+d

)
e−λ�

}
+b , (56)

where the final diagram is evaluated as the two-body
interaction U . These models differ only in the sub-leading-
order term (O(e−2κ�)); this term is local in the first model and
non-local in the latter. Since the leading-order terms are the
same we expect the asymptotic behaviour to be equal for both
models. However, as reasoned in section 3.3.2, the approach
to the critical regime will be strongly influenced by non-local
effects for wetting layers of finite thickness. Provided the
wetting parameter ω < 2, both models describe the approach
to the critical wetting transition from off-coexistence, exactly
at the wetting temperature, equivalent to setting a = 0. The
approach to critical wetting is done from off-coexistence to
allow an easier comparison with earlier work [9, 10, 13, 21]. In
this previous work the main concern was the comparison with
Ising model simulations [6, 7] for which the approach from
off-coexistence allows the measurement of ν‖ through the use
of the relation

〈�m1〉 ∼ 〈e−κ�〉 ∼ |h̄|1−1/ν‖ . (57)

Our reasoning from section 3.3.2 remains valid for this
approach to critical wetting as the main effect of non-locality
is in the numerator of (49), and this remains the same off-
coexistence. We already explored previously the effects of
non-locality for a finite bulk field and at complete wetting [13].

We follow essentially the same methodology (described
briefly below) used in previous work: for a more detailed
discussion we refer to [13, 21]. We discretize the models in
a lattice of size L × L with periodic boundary conditions and
lattice spacing δ = 3.1623/κ . In each Monte Carlo step, we
choose a lattice site i at random and increment the interfacial
height �(xi) by a random number which follows a uniform
probability distribution on the interval [−��,��]. Finally,
we use the usual Metropolis algorithm [22] to accept or reject
the new configuration. �� is chosen so that approximately
40%–50% of the attempted configurations are accepted. The
averages were evaluated over about 105 (106) Monte Carlo
steps per site, after an equilibration period of 104 (105) Monte
Carlo steps per site for L/δ = 101 (201). Applying the scaling
relation (57) to our data, we are able to extract an effective

Figure 2. Monte Carlo simulation results for the effective value of
the wetting parameter ωeff, as a function of the film thickness κ〈�〉,
for the local (equation (55), red squares) and non-local
(equation (56), blue circles) versions of the Aukrust–Hauge model in
regime II. Simulations on an L × L grid, where L is measured in
units of 3.1623/κ , λ = 1.75κ and b = 2.5κ2kBT .

value of the correlation length exponent ν‖ and, from (39),
determine an effective value of the wetting parameter, which
we can plot against the equilibrium film thickness.

For our model parameters, we set ω = 0.8 and b =
2.5κ2kBT which are reasonable Ising-like parameters, and
c
λ

+ d = b, so that the amplitudes of the local and non-
local terms are of the same magnitude to make any effect of
the non-local term more transparent. For the external field,
we have considered the values λ = 1.4κ and 1.75κ , which
are in the first and second fluctuation regimes, respectively.
Thus, according to the renormalization group predictions, we
anticipate that ν‖ = 3.98 and 3.70, respectively.

In both cases, we find that non-locality has a significant
influence on the predicted non-universality. For λ = 1.75κ ,
the results are similar to those obtained for systems with
short-ranged forces (V = 0). This is illustrated in figure 2,
where we plot the effective value of the wetting parameter
versus the averaged film thickness. The characteristic shape
of ωeff in this regime is very similar to that obtained in earlier
simulations: in particular, there is a minimum value ωeff ≈ 0.3
for wetting films about four bulk correlation lengths thick. In
our simulations, the effective value of ω is substantially smaller
than 0.8, even for our thickest wetting layers. For λ = 1.4κ ,
on the other hand, the description based on an effective value
of ω breaks down completely for thin wetting films and ωeff

can even become negative. This is due to a very pronounced
‘bump’ in the values of 〈e−κ�〉 as a function of the bulk field,
showing a strong signature of (sub-leading-order) non-local
effects for thin wetting films, see figure 3.

4. Conclusions

In this paper, we have extended our earlier derivations of
an NL interfacial model from an underlying microscopic
Hamiltonian. Our analysis is still limited to systems with
short-ranged fluid–fluid forces, but now it incorporates an

7
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Figure 3. Monte Carlo simulation results for the surface
magnetization-like operator�m1 = 〈e−κl〉 with the bulk field h̄ for
the local (equation (55), red squares) and non-local (equation (56),
blue circles) versions of the Aukrust–Hauge model in regime I. The
black line is the predicted asymptotic result ν‖ = 3.98, where only
the slope matters. Simulations on an 101 × 101 grid, measured in
units of 3.1623/κ , λ = 1.4κ and b = 2.5κ2kBT .

arbitrary external potential V (r). The first thing to note is
that the diagrammatic Green’s function method introduced
in [10], does generalize to this case. The binding potential
functional W [�,ψ] describing the interaction of the interface
and the wall still has a diagrammatic representation, but now
includes extra terms due to the external field. Even though
there are an infinite number of new diagrams, these can be
ordered in a relatively simple manner. There is, for example,
a single ‘sharp-kink’ diagram, which accounts for the most
direct influence of the external field and which, in many
circumstances, is the dominant interaction. Thus, we feel
that our derivation lends strong support to previous studies
based on phenomenological interfacial Hamiltonians. The
remaining two classes of diagrams, which describe first-order
and second-order interactions between the external field and
the intrinsic structure, can be ordered into sets of ‘zig-zag’
diagrams containing higher numbers of kernels which stretch
between the interface and wall. The structure of these is similar
to that found for systems with purely short-ranged forces,
except there is an extra kernel for W (1) and two kernels for
W (2) associated with the external field.

In this paper, we have also restricted our attention to the
double-parabola approximation for the bulk thermodynamic
potential �φ(m). Using the methods described in [11], one
could in principle extend the derivation to more general types
of potential, although the enumeration and ordering of the
additional diagrams, which would include third-, fourth- and
higher-order coupling to the external field, would be quite
daunting. We do not anticipate that this would reveal any new
physics.

Besides the inclusion of a constant external field, we have
considered two applications of the present formalism. The first
was the case of a long-ranged algebraically decaying potential
V = 1/z3, where we were able to make a connection with
earlier work by Dietrich and Napiórkowski [15], supporting

many of their conclusions. The second application was the
case of an exponentially decaying substrate potential similar
to a model introduced by Aukrust and Hauge [16]. The nature
of the critical wetting transition in this model is very subtle,
not only because the upper critical dimension is d = 3, but
also because non-universality can arise at the MF level in
itself. We have shown that NL effects are still highly important
for this model, even in regimes where it appears that the
leading terms in the binding potential functional are local. Our
analysis is fully supported by Monte Carlo simulations, where
sub-leading-order non-local terms are seen to have a strong
influence on the approach to the wetting transition. In regime I
these effects are so strong that an attempt to extract an effective
wetting parameter ωeff leads to negative values for thin wetting
layers. The results of this work strengthen the conclusion of
our earlier studies of critical wetting in systems of SR forces;
namely, that non-universality might be present asymptotically
but NL effects associated with the additional length scale ξNL

dampen interfacial fluctuations.
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